제목 | 답변완료 함수의 극한에 관한 질문 | ||
---|---|---|---|
질문유형 | 강좌내용 | 교수님 | 임계수 |
과목 | 기초수학 | 강좌명 | |
작성자 | 유*현 (y*****5) | 등록일 | 2024-05-17 18:19 |
기초 미적분학의 p.97 예제 1.9번안의 7번, 8번처럼
지수 함수에 합성 함수가 합성되어 있는 형태, 로그 함수에 합성 함수가 합성되어 있는 형태, 혹은 삼각함수나 다른 함수들에 함성 함수가 합성되어 있는 형태의 극한을 할 때
7번은 다항 함수 3^(2x^2 + x - 1) 에서 지수 안에 극한 값을 집어 넣어서 다항 함수만 x - > 1 로 보내면 2니까 최종적인 결과를 3^2 즉, 9가 나온다고 봤고,
8번의 로그 함수 또한 로그의 성질에 의해서 주어진 식을 정리하면 (2x^2+3x) / (x^2) 라는 유리 함수를 정의역으로 갖는 밑이 2인 로그 함수가 만들어지는데, 극한을 로그 안으로 집어 넣어서 유리 함수의 극한을 먼저 계산한 후에 최종적으로 정리하면 답이 1이 나온다고 해석하였습니다.
여기서 궁금한 것은 합성 함수의 극한의 경우엔 , 극한을 함수 안으로 집어 넣어서 함수의 일부만 ( 함수의 정의역 ) 극한을 취해도 상관 없는 것인지 궁금합니다.
( 합성함수의 극한의 성질 : f 의 극한 값이 존재하고 g 의 극한 값이 존재할 때 g • f 의 극한 값이 존재한다. 때문에 성립하는 것이 맞는지 궁금합니다.)
답변 완료된 질문과 답변은 수정 및 삭제가 불가합니다. |
- 댓글
- 0
안녕하세요. 유니스터디 임계수입니다.
질문에 대한 답변입니다.
- 2024-05-22
- 2024-12-12 수정