제목 | 답변완료 [선형대수학] 선형대수학 : 올바른 개념완성 35강(벡터공간에서의 선형사상의 행렬표현) 33분 | ||
---|---|---|---|
질문유형 | 강좌내용 | 교수님 | 임계수 |
과목 | 선형대수학 | 강좌명 | |
작성자 | 김*석 (f*******0) | 등록일 | 2023-01-12 13:43 |
교수님이 33분쯤에 설명하신 선형사상의 행렬표현의 유용한 정리가 잘 이해가가지 않는 부분이 있어 질문드립니다.
1. 전 선형사상 강의를 들으면서 V------W v1벡터---w1벡터=T(v1) 라고 생각하고 있었습니다만(V1벡터 w1벡터는 각 공간의 기저이다) 그런 식으로 `선형사상의 행렬표현의 유용한 정리` 를 바라보게 된다면 `좌의 w1` 과, `우의 T(v1)` 은 동일한 것을 나타내기 때문에 어색하게 될 것 입니다. 제 개념의 어디에서 문제가 있었던 인가요?
2. 또 관련개념에서 햇갈리는 것이, W가 R(M)에 속해있고, V가 R(N)에 속해 있다면, 차원의 정의에 따라 W의 기저의 개수는 M개 일 것이고, V의 기저의 개수는 n개 일 것 입니다. 그러나 92pg의 선형사상의 주요 관련 정리 4-2-1 에 의하면, 선형사상 T(v1), T(v2)... T(vn) 에 의해 W가 생성 됩니다. (R(T)=W) 그렇게 되면 이상한 것이, T(v1), T(v2)... T(vn) 이 W를 생성한다고 하면 W의 기저는 n개 이하라고 봐야 타당할 텐데, 만약 m이 n보다 큰 자연수라면 이건 모순이 되지 않나요?(기저의 개수가 m개여야 맞는데 이보다 작은 n개 이하의 기저로 생성을 하였으니) 어디에 제 개념의 모순이 있는 건지 잘 이해가 되지 않습니다.
선생님 평소에도 강의 정말 열심히 듣고 있습니다. 항상 감사합니다
답변 완료된 질문과 답변은 수정 및 삭제가 불가합니다. |
- 댓글
- 0
안녕하세요. 유니스터디 임계수입니다.
질문에 대한 답변입니다.
- 2023-01-16
- 2024-12-12 수정