
1차시 강의 물리의 차원, 벡터와 스칼라

유니스터디 박효철 강사

First 물리에는 어떤 차원이?

Second 물리에서 측정은?(feat. 유효숫자)

Third 벡터와 스칼라란?

물리의 차원?

단위계

> 국제단위계(International System of Units)

국제적으로 통일된 측정 단위 체계. SI 단위계라고도 함.

물리량	SI 단위계		단위
길이	미터	Meter	m
질량	킬로그램	Kilogram	kg
전류	암페어	Ampere	A
온도	켈빈	Kelvin	K
몰질량	몰	Mole	mol
광도	칸델라	Candela	cd

단위계

> cgs단위계

길이, 질량, 시간의 단위를 cm, g, s를 채택하고 이를 기준 삼음.

<u> </u>	<u></u>		<u> </u>
물리량	SI 단위계		단위
길이	센티미터	Centimeter	cm
질량	그램	Gram	g
시간	세컨드	Second	S
힘	다인	Dyne	dyn
에너지	에르그	Erg	erg
일률	에르그 퍼 세컨드	Erg per second	ergpersecond

단위계

➤ MKS단위계

길이, 질량, 시간 단위를 m, kg, s로 하고 이를 기본단위로 삼음.

물리량	SI 단위계		단위
길이	미터	Meter	m
질량	킬로그램	Kilogram	kg
시간	세컨드	Second	S
힘	뉴턴	Newton	N
전하	쿨롱	Coulomb	C
전류	암페어	Ampere	А
전위	볼트	Volt	V

차원(Dimension)

- ▶ 일반적 물리량의 측정값이 기본 물리량의 측정값에 어떻게 관계하는지 나타내는 지수
- ightrightarrow 일반적으로 $[L^x,M^y,T^z]$ 형태로 나타낸다!

차윈 표시의 예

넓이

속도 가속도

차원 분석이 중요?

단진자의 주기는
$$T=2\pi\sqrt{\frac{l}{g}}$$
 인가, $T=2\pi\sqrt{\frac{g}{l}}$ 인가?

용수철의 주기는
$$T=2\pi\sqrt{\frac{m}{k}}$$
 인가, $T=2\pi\sqrt{\frac{k}{m}}$ 인가?

그렇다면 측정은?

'값'에는 어떤 것이 있나?

1. 참값: 여러 가지 양의 실제값

2. 측정값: 측정하여 얻은 값

3. 근삿값: 참값에 가까운 값

오차는?

(오차)=(근삿값)-(참값)

유효숫자 계산

▶ 측정을 하다 보면 유효숫자(의미 있는 숫자)가 존재!

Q. 다음 수의 유효숫자의 개수는?

1	0.12	130.0	
13	0.428	1278.000	
146	0.2487	1.03×10^{5}	
1357	0.012	5.3×10^{-10}	
40628	0.0100		

유효숫자 계산

➤ 덧셈과 뺄셈

계산한 후에! 소수점 이하의 유효숫자 개수가 가장 적은 쪽!

Q. 다음을 계산하여라.

1.2+3.1234=4.3234

3.1-0.1592=2.9408

72+0.213=72.213

12.34-0.0002=12.3398

유효숫자 계산

> 곱셈과 나눗셈

계산한 후에! 유효숫자의 개수가 적은 쪽!

Q. 다음을 계산하여라.

7.3 X 2.213=16.1549

7892 / 0.24 = 32883.3333

0.21 X 9=1.89

0.881 / 6 = 0.14683333

벡터와 스칼라?

스칼라(Scalar)

▶ '크기'만 가지는 물리량

벡터들을 더하거나 뺄 때는 평행사변형법 이용!

▶ 부호가 중요!

스칼라의 예

시간, 질량, 길이, 에너지, 저항, 일 등

벡터(Vector)

- ▶ '크기'와 '방향'을 모두 가지는 물리량
- 벡터들을 더하거나 뺄 때는 평행사변형법 이용!
- ▶ 부호는 방향을 의미!

벡터의 예

속도, 가속도, 힘, 운동량, 충격량, 토크, 전류, 전기장, 자기장 등

평행사변형법?

벡터의 계산

> '크기'와 '방향'을 모두 계산해야 한다!

일반물리 과정 문제 (할리데이 일반물리학 10판 연습문제 변형)

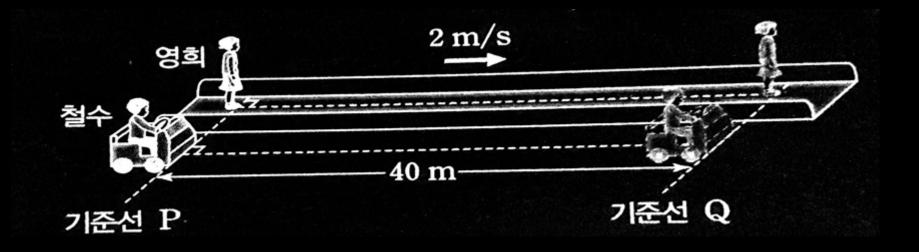
두 개의 벡터 r, s가 xy 평면 위에 놓여 있다. 이 벡터의 크기는 각각 4.5, 7.2이고, 이 벡터들의 방향은 각각 320도, 20도이다.(각도는 +x 방향으로부터 반시계 방향으로 잰 것이다.) 이 때, (a) r s s 와 s s 를 구하여라.

속도와기속도

이동거리(Distance) vs 변위(Displacement)

- ▶ '이동거리'는 이동한 모든 거리를 수치적으로 합한 것!
- > '변위'는 변한 위치. 즉, 처음 지점과 끝 지점 사이의 거리!
- ▶ '이동거리'는 스칼라, '변위'는 벡터!

예시!


속력(Speed) vs 속도(Velocity)

- > '속력'은 이동 거리를 총 시간으로 나눈 것!
- ▶ '속도'는 변위를 총 시간으로 나눈 것!
- <u>➢ '속력'은 스칼라, '속도'는 벡터!</u>

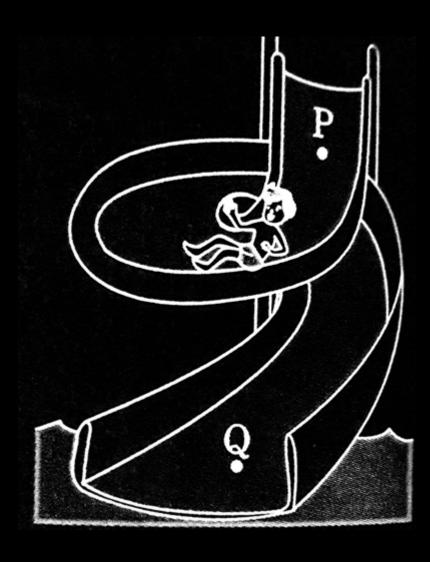
예시!

물리1 과정 문제 (2017학년도 대수능 6월 모의평가)

그림과 같이 2m/s로 등속도 운동하는 무빙워크 위에 서 있는 영희가 t=0일 때 기준선 P를 통과하는 순간 P에 정지해 있던 철수가 등가속도 직선 운동을 시작한다. 이후 철수와 영희는 P에서 40m 떨어진 기준선 Q를 동시에 통과한다.

이에 대한 설명으로 옳은 것은?

- ㄱ. 철수의 가속도의 크기는 $0.4m/s^2$ 이다.
- L. t=0부터 t=10초까지 이동한 거리는 영희가 철수의 2배이다.
- c . t =10초일 때, 철수의 속력은 2m/s이다.


물리2 과정 문제 (2017학년도 대수능 6월 모의평가)

그림은 철수가 물놀이장의 미끄럼틀을 타고 내려오는 모습을 나타낸 것이다. 점 P에서 점 Q까지 철수의 운동에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

ㄱ. 이동거리와 변위의 크기는 같다.

ㄴ. 평균 속력과 평균 속도의 크기는 같다.

ㄷ. 가속도 운동이다.

일반물리 과정 문제

(할리데이 일반물리학 10판 연습 문제)

어떤 입자의 운동이 다음과 같이 주어진다.(x는 미터, t는 시간)

$$x(t) = 4 - 12t + 3t^2$$

- (a) t=1일 때 이 입자의 속도는?
- (b) 음의 방향으로 이동 중인가?
- (c) 그 때 속력은?
- (d) 그 때 속력이 증가하는 운동 중인가 아니면 속력이 감소하는 운동 중 인가?
- (e) 순간적으로 속도가 0이 되는 곳이 존재하는가? 존재하면 그 때의 시 간을 구하여라.
- (f) t=3 이후에 이 입자가 음의 방향으로 이동할 수 있는가? 이동할 수 있다면 그 때 t를 구하여라.

2차시 예고 등속 직선 운동, 포물선 운동

감사합니다! ⓒ